MAJ 07/12/2007: ajout partie 5.
Billet initial du 05/12/2007.
Ce mémo est à destination des magistrats, greffiers, avocats et experts envisageant d’utiliser leur adresse email pour échanger des données confidentielles. Il sera développé, modifié et corrigé en fonction des commentaires et du temps que je pourrai y consacrer.
1) Problème
2) Solution retenue
3) Principes de chiffrement
4) Principes de signature
5) Les outils
6) Création de ses clefs
7) Les risques
1) Problème
Zythom, expert judiciaire, souhaite communiquer avec Maître Eolas, avocat, dans le cadre d’une expertise.
Les échanges doivent être confidentiels.
Il est possible que des documents soient annexés aux courriers échangés.
Les deux parties souhaitent avoir la preuve que l’autre a bien reçu et lu la correspondance (non-répudiation[1]).
Il va de soi que chacun souhaite également que la correspondance reçue et lue soit exactement celle qui a été envoyée (aucun tiers n’a réussi à la modifier).
2) Solution retenue
Pour des raisons légales, la solution retenue est basée sur l’utilisation de la messagerie électronique et la connaissance des adresses emails des deux parties. L’envoi d’un email équivalant à s’adresser des cartes postales, le choix est fait d’utiliser un système de chiffrement (parfois appelé à tort cryptage).
J’ai choisi le système GPG pour son universalité, sa gratuité, sa robustesse, sa qualité et sa licence libre.
3) Principes de chiffrement
Chaque partie dispose d’un couple de clefs qui va permettre la sécurisation des échanges: une clef privée (connue seulement de son propriétaire) et une clef publique (accessible à tous).
Ce qui donne:
Clef privée de Zythom et clef publique de Zythom,
Clef privée de Me Eolas et clef publique de Me Eolas.
Lorsque Zythom souhaite chiffrer un message adressé à Me Eolas (et à lui seul), il utilise pour cela la clef publique de Me Eolas pour chiffrer le message avant envoi (puisque la clef est publique, Zythom peut la connaître et l’utiliser).
Seul Me Eolas dispose de la clef permettant le déchiffrage (la clef privée de Me Eolas).
Même Zythom ne pourrait pas déchiffrer le message, puisqu’il ne dispose pas de cette clef privée indispensable (mais où est le problème, puisqu’il dispose du message avant chiffrage).
En résumé, lorsque l’on veut écrire à quelqu’un, il suffit de chiffrer le message avec la clef publique de cette personne.
Comment obtenir la clef publique d’une personne?
Et bien, il suffit de connaître son adresse email et de contacter un serveur de gestion de clefs publiques.
4) Principes de signature
Comment signer un document pour permettre d’identifier son auteur?
Par exemple, comment Zythom va-t-il signer un document de façon à permettre à Me Eolas de s’assurer que Zythom en est bien l’auteur?
Construction de la signature:
Zythom calcule la somme de contrôle[2] du message qu’il adresse à Me Eolas.
Cette somme de contrôle est ensuite chiffrée par Zythom avec sa propre clef privée (qu’il est le seul à détenir) et est jointe au document en tant que signature.
Vérification de la signature:
Me Eolas pourra alors calculer d’un côté la somme de contrôle du document qu’il a reçu, et d’un autre côté déchiffrer à l’aide de la clef publique de Zythom la signature jointe au document. Si les deux sommes de contrôle correspondent, l’auteur du document est identifié.
5) Les outils
Je n’ai pas la prétention de présenter tous les outils existants, ni même ceux couvrant toutes les configurations possibles. Je partage simplement mon expérience personnelle (forcément limitée).
La base:
Sous système d’exploitation Windows 2000/XP/2003/Vista: gpg4win. Choisissez a minima GnuPG et WinPT
Les messageries:
Les utilisateurs de Thunderbird installeront enigmail.
Les utilisateurs de Firefox installeront FireGPG qui fonctionne parfaitement pour Gmail.
Les utilisateurs d’Outlook: Personnellement, j’utilise beaucoup le copier/coller et WinPT avec le bloc notes.
6) Création de ses clefs
A venir…
7) Les risques
A venir…
La lecture des commentaires donnent déjà une bonne idée des risques.
[1] La non-répudiation signifie la possibilité de vérifier que l’envoyeur et le destinataire sont bien les parties qui disent avoir respectivement envoyé ou reçu le message. Autrement dit, la non-répudiation de l’origine prouve que les données ont été envoyées, et la non-répudiation de l’arrivée prouve qu’elles ont été reçues (extrait de wikipedia).
[2] La somme de contrôle, également appelée empreinte, résumé de message, condensé, condensat ou encore empreinte cryptographique, est calculée à l’aide d’une fonction de hachage.